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of the above form which can be mapped via a hodograph transformation
to a semilinear form. °

This algorithm provides a method for establishing whether a given

ential equations, such as the Harry-Dym equation u, = (u

ABSTRACT ol
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In this paperiwe develop ,an algorithmic method for transforming

o_-lF'

quasilinear partial differential equations of the form‘ut = g(u)unx +

f(u,u ,..,u(n ]) s u_ 3 u/ax , where dg/du $ 0 into semilinear

mx I

equationsi(i.e., equat1ons of the above form w1th g( ) = 1). “This
crucially involves the use of hodograph transformations (i.e., trans-

formations which involve the interchange of dependent and independent

Furthermore, we find the most general quasilinear equation

quasilinear equation is linearizable; i.e., is solvable in terms of
either a linear partial differential equation or of a linear integral
In particular, we use this method to show how the Painleve
tests may be applied to quasilinear equations. This appears to resolve

the problem that solutions of linearizable quasilinear partial differ-
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typically have movable fractional powers and so do not directly pass

the Painleve tests.
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I.  INTRODUCTION

Recently there has been considerable interest in the solution of
certain physically significant, nonlinear partigl differential equations.
[t turns out that the solutions of these equations may be expressed in
terms of the soluticn of linear equations (either linear integral equations
or linear partial differential equations). In 1967, Gardner, Greene,
Kruskal and Miura [1] associated the solution of the Korteweg-de Vries
(KdV) equation with the time independent Schrddinger equation and showed,
using ideas from the theory of direct and inverse scattering, that
the Cauchy problem for the KdV equation (for initial data on the line
which decays sufficiently rapidly), could be solved in terms of the
solution of a linear integral equation. Subsequently, this novelty
was developed into a new method of mathematical physics, often referred
to as the inverse scattering transform (1.S.7.), which has led to the
solution of numerous evolution equations (see, for example, [2] for
details). These nonlinear evolution equations have arisen in many
branches of physics including water waves, stratified fluids, plasma
physics, statistical mechanics and quantum field theory. Previous
to the KdV equation, the first physically interesting nonlinear partial

differential equation which was solved in terms of a linear partial

differential equation was Burgers' equation

s Up = U ¥ 2uux, (.1

which was mapped into the linear heat equation via the Cole-Hopf trans-

formation [3].
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Partial differential equations which can either be solved by
'y
: an appropriate [.S.T. scheme or by a transformation to a linear partial .
)
) differential equation are said to be linearizable. The most well known ~
)
linearizable partial differential equations are of the form
o
!
(v
,. Ny
! = s 22
[ Ug = U ¥ f(u’“x""’u(n-l)x)’ n> 2,l%x 7 (1.2)
A
: Definition 1.1 A partial differential equation is said to be semilinear
§ if it is of the form (1.2).
' There also exist linearizable equations of the form
v
o
N up = gluju o+ f(u,ux,...,u(n_])x), n> 2, (1.3)
.
By
v where dg/du & 0.
y Definition 1.2 A partial differential equation is said to be quasilinear
L~ if it 1s of the form (1.3).
; 3
Well known examples of quasilinear linearizable equations ;
’
include an equation studied in [4], -
Y -2 -
Uy = (u Jx)x toauu, (1.4)

where ( is an arbitrary constant and the Harry-Dym equation (Kruskal {5])
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*




M PO PR U S = = R N e M o W W T NGV N WY W Y w a Y a ™ s

- -1/2

By Ug ~ 2(v )xxx’
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» ' which is known to be linearizable [6] (see also [2b]).
o Fokas and Yortsos [4] considered second order quasilinear
)
:, partial differential equations using the symmetry approach of

)
? Fokas [7]. They showed that the most general equation of the form
"
) u, = g(u)uxx + f(u,ux), (1.6)
-
. which is linearizable is the equivalent to the equation (1.4), which

ﬁ via an extended hodograph transformation is mapped to the Burgers' equation.
"

" Similarly, it is known that the Harry-Dym equation (1.5) can be trans-

y formed either into the KdV equation (see, for example, [2b] or [8]), or
) ,u

I the MKdV equation (see, for example, Kawamoto [9]). The

3 notions of equivalence and hodograph transformations are defined below:
y

’ Definition 1.3  Two partial differential equations are equivalent if one

can be obtained from the other by a transformation involving the dependent

'f variables u = & (v) and/or the introduction of a potential variable
- (u = v oru = v)
’,

4

j For example, the Burgers' equation is equivalent to the heat eguation.
..:

X Definition 1.4 A pure hodograph transformation is a transformation

of the form

v
L 4

(4
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T = t, £=u(x,t). (1.7) -

Definition 1.5 An extended hodograph transformation is a transformation

of the form
T o= t, £ = j'(u(x',t))dx'. (1.8)

The above discussion naturally motivates the following questions:
Equation (1.4) is a quasilinear analogue, via an extended hodograph
transformation, of Burgers' equation. Similarly, the Harry-Dym equation
(1.5) is a quasilinear analogue of the MKdV equation.

i) [s there an algorithmic method of finding a quasilinear

analogue of any semilinear equation?

ii) [s the associated quasilinear equation unique?

ii1) Conversely, given a quasilinear equation, is there an

algorithmic method of finding whether it can be mapped

to a semilinear equation as well as finding this semi-

P
¢
~
)
4
&

»

linear equation?

In this paper we consider the above questions for semilinear and

e s Ty e W

quasilinear equations (1.2) and (1.3) respectively. The answer to
question i) is affirmative. Also, the associated quasilinear equation
is unique, since extended and pure hodograph transformations yield
equivalent quasilinear equations. Furthermore, we find the most general
equation of the form (1.3) which can be mapped via an extended hodograph

transformation to a semilinear form.
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The above results are of some interest in establishing whether
an equation is a candidate for linearization. Suppose that one is
interested in investigating whether a given quasilinear equation is
linearizable. We propose the following algorithmic procedure (see sl[Il);
1. Put the equation into its potential canonical form

), (1.9)

V, = V. v__ + H(vx,v ""’V(n-l)x
. . _ =1/n
by using the transformation vx =g (u).
2. Apply a pure hodograph transformation to equation (1.9). If equation

(1.9) is transformable to a semilinear equation, it will become
=n oL+ ﬁ(nf,nrf, cees YWn-])Q' (1.10)

3. Investigate whether equation (1.10) is linearizable. This is
easier than investigating whether (1.2) is linearizable directly.
The reason for this is twofold. First, for at least third order
equations there is a complete classification of all linearizable
equations. Within equivalence, there exist only six such equations
(see below). Hence one needs to study if there exists an equi-
valence transformation to map equation {1.10) with n = 3, to one
of these six canonical equations. Second, for equations with
n > 4 one may investigate the question of linearization via the
Painlevé test. The Painlevé approach is reviewed below. Here we
only point out that quasilinear partial differential equations do

not appear suitable for applying the Painlevé test. Ramani,

- AV




Dorizzi and Grammaticos [10] (see also [11] and the references

therein) introduced the notion of "weak-Painlevé" in order to deal

with equations such as the Harry-Dym equation which are linearizable
after a change of variables. However, the higher KdV equation
Up = Ut u3ux, although not thought to be linearizable (since it
has only three independent polynomial conservation laws of a certain
type [12]),is also "weak-Painlevé" [13]. Therefore the "weak-Painlevé"
concept does not distinguish between a linearizable and a non
linearizable equation.
We point out that one often finds in the literature claims of “new"
third order linearizable equations. These equations, using the notion of
equivalence can be mapped via a pure hodograph transformation to one of
the six canonical equations mentioned above.
The above algorithmic approach is useful provided that a given
linearizable quasilinear equation can be mapped to a semilinear form.
The above approach will fail if there exist linearizable quasilinear
equations which can not be mapped to a semilinear from. It is shown

in [4] that such equations do not exist for at least n = 2. The

guestion of whether such equations exist for n > 3 remains open. Important
results in this direction can be found in [43].

. o -
Aty

TA. C(lassification of third order equations

Svinolupov, Sokolov and Yamilov [14] have claimed that the

.
O

only third order semilinear partial differential equations which are

linearizable are equivalent to the following six eguations:
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7
Up = Uy, bV UL (1.1
Ug = Uyxx +uux+ Uy (1.12)
Up = U P UTU U, (1.13)
u, = u - lu3 + (a el v+ 2 e u)u + Yu (1.14)
t XXX 8" x : !
- 3 2y-1 3 2 .y
Ut T Uxxx T 2YxY (1 + ux) i ZP(U)(UX * ])ux v (1.15)
- 32 -1 -1.3 2
Up = Upxx ~ 2k Toruy T 2P(u)ux o Ue (1.16)
where
dpP,2 3 :
()" =4 - P - =, (1.17)
and ~«, 2, y, & and ¢ are arbitrary constants. Eguation (1.11)
is a linear partial differential equation which is sometimes referred
to as the Airy equation in moving coordinates; equation (1.12) is the y
A
KdV equation, which was the first equation to be solved by 1.S.7.[1]; ‘i
4
equation (1.13) is the Modified KdV (MKdV) equation, also solvable by y
1.5.7. [15]; equation (1.14) is the Calogero-Degasperis-fokas [(CDF) 3
equation [7],{16],equations (1.15) and (1.16) are as yet unnamed and 1
involve the Weierstrass elliptic tunction Pfu'. we note that the CDF R
: equation can be put Into rationa: torm: Ge ot “, E
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Alternatively, provided that o« = £ = -2y (if x& # 0, then one

can rescale and translate the variables in (1.14) so that this holds),
letq = sinh(u/2) to obtain
3 2 2 2
A = G, - F0aq /(1 +a7)] + 4u q7q . (1.19)
(Equation (1.19) is sometimes referred to as the 'deformed MKdV equation [17]
or the modified MKdV [18], though itisequivalent to the CDF equation.)
We also note that both equations (1.15) and (1.16) can be put into

rational form by the substitution v = P(u).

[B. The Painlevé Tests

The Painlevé ODE test, as formulated by Ablowitz, Ramani and
Segur [19] and Hastings and MclLeod [20] asserts that every ordinary
differential equation which arises as a similarity reduction of a
partial differential equation solvable by inverse scattering is of
Painlevé type; that is,it has no movable singularities except poles,
perhaps after a transformation of variables. Ablowitz, Ramani and
Sequr [19b] and McLeod and Olver [21] have given proofs of the Painleve
0DE test under certain restrictions. Subsequently, Weiss, Tabor and
Carnevale [22] developed the Painlevé PDE test as a method of applying
the Painleve ODE test directly to a given partial differential equation,

without having to study any similarity reductions (which may not exist
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anyway). A partial differential equation is said to possess the

Painlevé'property if its solutions are "single-valued” in the

neighborhood of noncharacteristic movable singularity manifolds.
These Painlevé tests have proved to be a useful criterion for the
identification of linearizable partial differential equations. The
method introduced by Weiss, Tabor and Carnevale (with simplifications
due to Kruskal [23]), involves seeking solutions of a given partial
differential equation in the form

oG

u(x,t) = :p(x,t)jz

ol ()33 (1), (1.202)
with
2 (x,t) = x + f(t), (1.20b)

where f(t) is an arbitrary, analytic function of t and uj(t), j=0,1,2,...,
are analytic functions of t, in the neighborhood of a noncharacteristic
movable singularity manifold defined by ¢ = 0. Essentially, if a
given partial differential equation possesses solutions of the form
(1.20) where p is an integer and with the requisite number of arbitrary
functions as required by the Cauchy-Kowalevski theorem, then the partial
differential equation is said to pass the Painlevé PDE test.

However, the application of the Painlevé tests to quasilinear
partial differential equations is not as straightforward. For example,

consider the Harry-Dym equation (Kruskal [5])
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which is known to be linearizable [6] (see also (2b]). Then (1.21)
does not directly (i.e., without a transformation of variables) pass

the Painlevé PDE test since it has an expansion of the form

-4/3 b 1/3
: ( Tout)s 7 (x,t), 1
o (1.22)

u(x,t) = X,t)

with s (x,t) = x + f(t), in the neighborhood of a noncharacteristic
movable sinqularity manifold defined by * = 0 and so has movable cube
roots (see Weiss [24] for details). If an equation has an expansion

of the form

‘ _ . Pp/r z i/r
3 U(X,t) - (X,t)': uj(t):J (X,t), (]23)
j=0
wnere p and r are integers determined from the leading order analysis,
. then the equation is said to be "“weak-Painleve". However, as was
'
pointed out earlier, the non linearizable equation Up = Uy + u3ux :_
‘. , ) o
s is also weak-Painleve. o
a
- ’:‘
Y -
!\
[T. SECOND AND THIRD ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS }
An extended hodograph transformation comprises of the change N

!

of variables u - v, o® > (uix,t)) followed by a pure hodograph trans-
formation, and therefore these transformations are simply related.

We first consider the pure hodograph transformation in more detail.
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1.4
' t=1, x=n(,1) (2.1) y
A \
» s
5 Then using (1.7),
o
- - | -
~, LI 3£-+ T3 T U (2.2a) 3
Iw L]
-. e TR T T T U o (2.20)
L} R
: ‘
b Therefore the Jacobian of this transformation is U - Similarly for j
- the inverse transformation (2.1) we have i
‘ .
B
Y
W) -
g B.T XD, bt = T3 (2.3a)
: 3
> I =Lt YL (2.3b) e
;E Under a pure hodograph transformation, derivatives transform as follows K
o .,
Cd
Pd o
4: u = r\'-] u = -n r\:] (2.4&) .'
) X S T L0
n
“I
~ - ~-3 - - -4 . 2,75
.' Ugx =7 TanTe Uxxx A v 3t oo (2.4p)
o or inversely
; -1 -1

r = = - \

P UL . U, (2.5a)
1 - - - -
1 Y 3, ... = o-u 4 3u 2,73 , (2.5b)

XX X XXX X XX X
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Therefore the linear partial differential equation
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Note that if one applies a pure hodograph transformation to a partial
differential equation in potential form (that is an equation which does
not depend explicitly on the dependent variable) which also does not
depend explicitly on the independent variables, then the resulting
equation is also in potential form with no explicit dependence on the
independent variables. Therefore, before applying a pure hodograph
t~ansformation to a given partial differential equation, we shall
put the equation into canonical potential form.

We now consider second order gquasilinear partial differential

equations.

ITA. SECOND ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS

The most general second order, quasilinear partial differential

equation of the form

[N
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transformation to a semilinear partial differential equation of the
form
S, TSt G(S,S, ), (2.9)
is given by
- 99" _ 95,2 .
up = gludu,, + (S - S)up v pi(u)uy, (2.10)
where ' z d/du, and g{u) and b(u) are arbitrary functions which are
twice and once differentiable, respectively. Furthermore, equation
(2.9) is equivalent to the equation
v. = vl v H(v) (2.11)
t XX x'’ ’
which is transformed via a pure hodograph transformation to
.. -1
T H(n ). (2.12)
Proof
In equation (2.8) we make the transformation
To=t, 2= Fx,t), (5,7) = ulx,t),
then (2.8) becomes -
;:'-
")
»
)’
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Now cnoose F such that

-1/2
- g /e

where A(u,ux) is such that the compatibility of (2.13) (i.e., Fxt = Ft

implies (2.8). Therefore

1 -3/2 ., -
-39 9 Uy © Auux Y Auxuxx'
where Au = 3A/lu, A, = aA/aux; using (2.8)
X
1 -1/2 ., -
-39 / 9 Ut gf(u,ux) B Auux AL U

X

Equating coefficients of u,, to zero in (2.15), it is seen that

where a{u) is an arbitrary function. Also from (2.15)

Au =- %9-3/29'f(u,ux).

14

{2.13a)

(2.13b)

)

X

(2.14)

(2.15)

(2.16)
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Therefore, from equations (2.16) and (2.17) we find that v
{
= 9.9._'-'- - 9_' 2 ' (.
fFlusu ) = ( 7 3=)u, + b'(u)u, (2.18)
where b(u) is an arbitrary function. Hence, it follows that the most 2
general equation of the form (2.17) which is transformed via the \
extended hodograph transformation %
"
3
r -] 2 ' ' :
To=t, 5= fg / (u(x',t))dx e
:
into a semilinear partial differential equation has the form 5
= g_g_'—‘_ - 9_‘ 2 | ':-
uy g(u)uXx + 3 5 )ux +b (u)ux. (2.19) :
We now wish to transform (2.19) into semilinear form. Our algorithm hY
is to put (2.19) into a canonical (potential form) partial differential -3
o
equation and then apply a pure hodograph transformation to convert the -
&
canonical equation into a semilinear equation. In (2.19) we make the «
transformation g(u) = v;z and obtain i
R
‘.
v.o= vy e H(v ) (2.20) :
t X XX x’? :
-
where H is expressible in terms of b. Equation (2.20) is the f.
canonical equation (since all equations of the form (2.19) are equivalent Y
to (2.2C)). It is essential that the ratio of the coefficients of
- N,
Voo and Vi in (2.20) is sz in order that the quasilinear equation 1s
\
transformed into a semilinear one via a pure hodograph transformation. \

[}
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Y
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Finally, applying a pure hodograph transformation to (2.20), we obtain
- -1
n.o S on.. - " H(nT), (2.21)
as required.
Therefore in summary, in order to determine which equations
of the form
Uy = g(u)u)(x + f(u,ux), (2.22)
h dg . . .
where 3= # 0 and f(u,ux) is a rational function of u and Uy
are linearizable, it is sufficient to consider the canonical equation
v, = v-2v + H{v ) (2.23)
t X XX x’? «
where H(vx) is a rational function of v . Applying a pure hodograph
transformation to (2.23) yields
ﬂ" = ﬁ:: - qu(n;])
This can be put into non-potential form by making the transformation
w = n_, hence
W= w__+ hiww. , {2.24)
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"'-" "“-"“ﬂ"_v’\’ T N N N L R e m e M Y e e h kW m, e o mae s e S et -y
o T, < 3" " "&"\".&" o "' L f A '\"\ "\' e (\"\."\' \""\"*.' \"\'-'\ -"\ - \"\"\"’-’ "\. SN

Y vy ae

VLSO

-

-



-
.

3
p
h

LA N A PREIS A B

SO e e,

AW T 2>,V

Z Y
R

17
where
d
= .- )
h{w) dw[wH(l/w)]. (2.25)
[t is shown in Appendix A that equation (2.24) can pass the Painleve
tests if and only if
h(w) = 2w +¢
where o and 8 are constants. Hence from (2.25),
Hiw) = ™! s o (2.26)
Therefore, this suggests that the most general partial differential
equation of the form (2.22) which is linearizable is equivalent to
the equation
u, = (u-zux)X + 1u_2ux. (2.27)

We use the word "suggests" because we are aware that the Painleve tests
have not yet been proven, though there is considerabie evidence suggesting

their validity. This completes the "proof"” of the result first obtained

by Fokas and Yortsos [4]. However, the method in the present paper is

somewhat simpler than that used in [4] and is easily generalizable to

higher order quasilinear particl differential equations.
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[IB. THIRD ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS
Proposition 2.2
The most general third order, quasilinear partial differential
equation of the form
i dg ,,
up = gluu ot Flususu )y 35 # 0, (2.28)
which may be transformed via an extended hodograph transformation
to a semilinear partial differential equation of the form
S. =5S...+*G(S, S, S,:), (2.29)
is given by
Ug = g(u)uxxx v Bu(u’ux)ux 8 x(u’ux)uxx
(2.30}

[} a ] [ ] 1
+ (g.— - %)B(u,ux)ux + (QSL - %—)uxu

where Bu: = 3B/5u, Bux D= 38/?ux, prime denotes derivative with
respect to u, and g{u) and B(u,ux) are arbitrary functions. Furthermore,

equation (2.29) is eguivalent to the equation

\ ,7.

which is transtormed via a pure hodograph transformation to

R NN

Y Yy
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- g(u)Fi*i::+ 39F Fux e 2 (ngxx ) t)q'
(T F§'££+ Fxxni).
: Now choose F such that
gfF3 =1, e, Fo= g7 /3, (2.33a)
Foo= Alususu )y (2.33b)

where A(u,ux,uxx) is such that the compatibility of (2.33) (i.e.,

_ . . \
FXt = th) implies (2.28). Therefore

1 -4/3
59/

- g'u, =Au +A y +A u _,
u u
t u X x XX xx XX

or using (2.28)
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] '] 3 ) ] -4/3 '
"3 / 9 Uxx T 39 AERACITEN
N o (2.34)
u x U, X X u” X XX
By collecting terms and equating the coefficient of u to zero in
(2.38), it is seen that
_ 1 -1/3, .
A(u,ux,uxx) = -3 Glu, ot auau ), (2.35)
where a(u,ux) is an arbitrary function. Also
- ] '4/3 ]
AUy * Auxuxx T 9'u, Flusu vu, 0 (2.36)
Therefore, from equations (2.35) and (2.36) we find that
s %3, L, /99" 9'y.@
f(u’ux’uxx) = -3(g /9 )[auux ’ auuxx] ' g' T3 )uxuxx’
B, (usu Ju + Bux(u,ux)uxx + (g. 19 )B(usu Ju,
L (99 9,2
( 3 -Iuu o (2.37)
_ 473, . :
where B(u,ux): = -3(g " 7/g )a(u,ux). Hence, it follows that the

most general equation of the form (2.36) which is transformed via the

extended hodograph transformation

X
fet e g 3 u(x 1)) dx
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2] :
into a semilinear partial differential equation has the form

u, = g(u)uxxx + B (u,ux)ux + B . (u,u )uxx )

A

Y

9 _ 49’ 99"’ _g° N

+ (g' Tq )B(u,ux)ux + 3 3 Ju T (2.38) R

o

-~

P

In (2.38), make the transformation g(u) = v;3, then we obtain ™

¢

N

\

3 N

Ve SV TV Y H(Vx’vxx)’ (2.39) -:.

.

where H(vx,vxx) is expressible in terms of B(“’Ux) and g(u). Therefore, y

’

(2.39) is the canonical equation (again, since all equations of the .':

form (2.38) are equivalent to (2.39)). Finally, applying a pure “

hodograph transformation to (2.39), we obtain

E.

mLoE o, T -ﬂ_.-"f.3_) , (2.40) "3

(St

as required. o

[' Thus proposition 2.2 provides an algorithmic method of transforming R
|

5 the quasilinear partial differential equation y

'L .
’

0 - { 2 -1

g vy = gluu o fluyu ) (2.41a) :

. Ly

‘. ’u

" pt

b .l

. where .
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f(u,ux,uxx) = g(u)uXxx + B (u,ux)ux + Bux(u,ux)uxx
g 49’ 99 ' _ ¢
+ (gl 39 )B(UQUX)UX + ( gl 3 )UXUXX, (2.4]b)
into a semilinear partial differential equation; i.e.
1. Put equation (2.41) into the potential canonical form by making the
transformation v = 9-1/3(u); hence we obtain
v, = v—3v + H{v_,v_) (2.42)
t X XXX X xx )
2. Apply a pure hodograph transformation to equation (2.42); hence we
obtain
- = -, - H(n_:], - ”‘r:‘"‘t—3)' (2.43)

- R

3. The resulting partial differential equation will be in potential
form and usually one first puts the equation into nonpotential
form by making the transformation w =n,. Furthermore, if the
resulting semilinear partial differential equation is linearizable,
then it can be expected to be equivalent to one of the six partial
differential equations given by Svinolupov, Sokolov and Yamilov

[14], which are listed in §1 (equations (1.11)-(1.16)).

Therefore it may be necessary to seek a change of dependent variables

. W= »(Q) and write the resulting equation in non-potential form,

‘ An alternative approach is to apply the Painleve tests directly

P PR IR TR DR
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on the semilinear equation, provided that the nonlinear evolution
equation is in rational form (i.e., H in (2.43) is a rational

function of its arguments).

There are two remarks we wish to make about the above procedure.

1. It is important to first put equation (2.41) into canonical form

by making the transformation v = g /3

23

u) before applying the pure

hodograph transformation (otherwise the partial differential equation

will remain quasilinear). To demonstrate this, consider the Harry-

Dym equation

u - (U]/Z)

t XXX ©

First put (2.44) into potential form by letting Ve T U then

_ -1/2
t (Vx )xx‘

Applying a pure hodograph transformation to (2.45) gives

- - -y

s o

- (P;]/Z)

which is just the same equation (i.e., the potential Harry-Dym

equation is invariant under a pure hodograph transformation).

(2.44)

(2.45)

2. If the quasilinear partial differential equation is not 1n the special

!
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r3
form (2.41) then the transformation v ® 9—1/3(u) yields either a N
» X
higher order or nonlocal partial differential equation. For ]
exampie, consider the partial differential equation X
] -
u = U- u . :
t XXX (2.46) X
Pl
-
Then after making the transformation V., T uwe obtain v
(%t
0t
_ -3 :
Vet T Vs Viooxx
~
£
or ‘o
X Y
v = v 3y + %[ v i Voo .
t X XXX X XX XXX
.
By considering several examples., we shall now demonstrate how the procedure y
developed above can be applied to determining whether a given third ;
order quasilinear partial differential equation might be linearizable. 73
In these examples, we apply the Painlevé tests to the semilinear equation A
to determine necessary conditions for the equation to be possibly E
linearizable. Furthermore, we show that when these conditions are i
satisfied, then the equation is equivalent to a l:rearizable equation i
by exhibiting the requisite transformation. Since we are using the :
Painlevé tests in these examples to exclude several possibilities, i
when we conclude below that an equation is "nonlinearizable" (because 2
.
R
the above conditions are not satisfied), we mean "ngnlinearizable, v
sutject to the validity of the Painlevé tests”, 1.e., 1n these cases f
the equation is “probably nonlinearizable." N
Yy
~
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' Excmple 2.1

- In this example we determine for which values of the constant
! is the equation

- = 3 + 2

- Uy = UTU ot uu U

\ linearizable. Equation (2.47) was considered by Kawamoto [9], where
;2 we note that if x = 0, then (2.47) is equivalent to the Harry-Dym

4

X equation Ve Z(V-]/Z)xxx =0 (set u = v'l/z). In order to set (2.47)
% in canonical form we make the transformation Vo T 1/u, hence

. -3 ] -4 2

Vi T V% Yaxx T _2—(‘1 * 3)v Vex
- Applying a pure hodograph transformation to (2.48) gives
L 1, 2 -]

3 R A AR LT

:
X We now apply a sequence of transformations to (2.49). First we put

- (2.49) into non-potential form by letting w = ~., hence

W= W + %(k -3)(w§/w)_,

N

i Then, in order to determine whether (2.50) is equivalent to one of the
[«

~ six linearizable equations given by Svinolupov, Sokolov and Yamilov

! 71471 (equations (1.11)-(1.16)), we let Q = In w, hence

-,

-, r e Y m Ty ® B a” a? g T ™o "y T, Vo .t mem e e - - .- . . - -
x\.“.;b\,‘N.“-\'v\-q'."-‘-“'\*.'.--.u,'. S NN T T T T e e .,
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W
(2.47)
(2.48)
(2.49)
(2.50) .
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)
1]
/ Q, = Q.+ Q0 Fbu) Q2 (2.51)
2 T £5¢8 R 2 £
b
) Finally, putting (2.51) into non-potential form
L,
v Q = q tafqe,, + q,2) + %(a -l)qzq_. (2.52)
. T Fer ol e, I
) R
' (additionally it is simpler to apply Painlevé analysis on equation
oy (2.52) rather than on (2.50)). It is shown in Appendix B that equation
e )
N (2.52) can pass the Painlevé tests only if eithera = 0, z = 3/2 or
f ™
. 1= 3, If x =0, then (2.52) is the MKdV equation, which is known to
3 be linearizable [22]. If a = 3/2 or » = 3 (after rescaling q), then
4% (2.52) is the second equation in the Burgers' hierarchy
v
3 2 3 2
N q =g, *3laa_+q) 790, (2.53)
- 3 3% 23 £
2
v
(Olver [25]), which is reduced by the Cole-Hopf transformation
-
Jl
¥
%
_4 qv = 2(]” U)r = ZUP/U,
52 to the linear partial differential equation
] U= u., .
: ‘
' g
f (i.e., equation {2.53) is equivalent to (1.11)). Therefore we conclude
» that equation (2.47) is linearizable only for these three values of :.
.
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Example 2.2

Consider the equation

u, = fu (1 + 232 2y-3/2 (2.54)

t +21ux(1 + u

XX
where ais a constant. Note that if a = 0, then (2.54) is an equation
which was shown to be linearizable by Wadati, Konno and Ichikawa [6a].

To put (2.54) into canonical form we make the transformation

v, * (1 + u2)1/2’ hence we obtain
_ -3 3 -4 2 2 2 -2
Ve TV TV T DY vxx[(1 - ZVX)/(] - Vx)] ~av, . (2.55)

Applying a pure hodograph transformation to (2.55) gives

WS W, * 33w2w: + %[ww?/(] - wz)]r. (2.56)

R

~

Equation (Z.56) is equivalent to equation (1.19) (after rescaling the
variables), which is known as the 'deformed MKdV' equation [17] or
'modified MKdV' equation [18] and as shown in 31, is equivalent to the

COF equation (1.14) via the transformation w = cosh’q Z). Hence

we obtain

~ "~ “~ o L N T e LN AN NN e S -
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q' = q,’_’.’ - §q§ + 315]nh2(Q/2)qr, O
< 4
or
3
] . - - y
Q. = a.. - 1a0 2ded -2+ eYq.. (2.57) :
b \
' [f . = 0 then {2.57) s +he potential MKdV equation, while 1f : # 0, N
: ~
then (2.57) s the COF egquation. Therefore equation (2.54) 1s .
f
¥ linearizable for ail values of . ot
‘S
Example 2.3 :
]
b Consider the equation g
U N AN VLS T (2.58) 7
t XX X Ty ’ : :
; where f is a rational function and prime denotes differentiation with i‘
respect to the argument. The objective is to determine for which ;‘
; choices of f is (2.58) linearizable (note that if f' = (0, then {2.538) "
"
)
3 is the Harry-Dym equation). First we put (2.58) into canonical form by :
» .
making the transformation V. © u]/z; hence we obtain 1
3 -3 3 -4 2 >
’, = - = - Q ]
n Yt Y Vxx 2Vx Vxx F(Vx) (2.59) .
; ?
»
b Applying a pure hodograph transformation to (2.59) gives §j
~
. 302 -1 ] 3
{ R T T -
K ~
F,\
which has the non-potential form (w = ' .) N
Y
s ;
7
s ~
» -
’ . N
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o
L %(WE/W){ - g'(w)w;, {Z.00)
where g(w): = w f{1/w). It can be shown that (2.60) can pass the
Painlevé tests if and only if
3 -1 .
g(w) = W™ +2w +yw , (2.01)
hence
fw) ='1w—2 +3 + sz, (2.62)
where o, 2 and vy are arbitrary constants (see Appendix C for details).
Note that equation (2.60) with g(w) as given by (2.61) is just
equation (1.18), which is equivalent to the CDF equation (1.14) if
either v # 0 or v # 0 (let w = eu/z); if a=+vv =0 and g = w./w, then
) q satisfies the MKdV equation, hence equation (2.60) with g(w) as
given by (2.61) is iinearizable. Therefore, we conclude that the most
general equation of the form (2.58) which is linearizable is
T 2(u-]/2)yxx + 2yu]/2ux - qu'3/2ux = 0. (2.63)

ITI. HIGHER ORDER QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS.

The method developed for second and third order quasilinear partial
differential equations can easily be extended to higher order equations.

Proposition 3.1

The most general quasilinear partial differential equation of

the ftorm




J
’
’
i

st lla

which may be transformed via an extended hodograph transformation

to a semilinear partial differential equation of the form

t nx g
n-1
T +/9_9; - 9;
+ B UX + u2 Bu(r-])xurx \ gn n )Uxu(n_]) ’
r=

where prime denotes derivative with respect to u, and g(u) and

Blusu ...

< ’u(n-Z)x) are arbitrary functions.

(3.2) is equivalent to the equation

._4 -, LN
AR L S NN A e
N e s N

Furthermore, equation

(3.2)

(3.3)

(3.4)

(3.5) 3
]
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Proof
The proof is analogous to those for Propositions 2.1 and 2.2
above and so we shall only sketch an outline. [n equation (3.1) we

make the transformation

and choose F such that

where A(u,ux,...,u(n_])x) is such that the compatibility of (3.6),(3.7), i.e.

Pt * th) implies (3.1). Therefore
1 -1/n_, 1 -(n+1)/n_,
G 9 Usxx ~ n9 9 f(u’ux""’u(n—l)x)
n
=AUt LA ] U (3.8)
r=2 (r=1)x
Hence
_ l - ( n ] )/n '
A(uyux,-..,u<n_1)x) —-ng g [gu(n_]>x
+ 1 )
B(U.ux, Uino2) )1, {3.9)
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where B(u,ux,...,u(n_z)x) is an arbitrary function. Therefore, from
equation (3.9) we find that

n+1
f(u,ux,...,u(n_])x) = (4 - e g—)B(u,ux,...,u(n_z)x)ux

Hence, it follows that the most general equation of the form (3.10)
which is transformed via an extended hodograph transformation
into a semilinear partial differential equation has the form (3.3)
as required. Equation (3.4) is obtained from (3.3) by making

the transformation v = g-]/n(

u), where H(Vx""’v(n-l)x) is
expressible in terms of B(u,ux,...,u(n_z)x) and g{u) and therefore is
the canonical equation. Finally, equation (3.5) is obtained by applying
a pure hodograph transformation to (3.12).

Proposition 3.1 provides an algorithmic method of transforming

the general quasilinear partial differential equation

up = glulug v Flususeeug ) (3.11a)
where
-3 ol gl

Flusu, ,u(n_1)x) (g' g )B(u,ux,...,u(n_z)x)uX

n-1

. 7 S99 9
* Buux Bu Yrx ( q' n )uxu(n-1)x’
o2 (r-1)x

into a semilinear partial differential equation as follows:
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Put equation (3.11) into the potential canonical form by making
the transformation v = g_]/n(u); hence we obtain ,
%
_ -n

Ve TV Vet H(v WVox ’V(n-])x) (3.12)
Apply a pure hodograph transformation to eguation (3.12); hence we
obtain

rt: r‘ynr’ +H(n‘:,n':i,...’r‘(n-])g)- (3.]3)

The resulting partial differential equation will be in potential

form and usually one first puts the equation into nonpotential form
by making the transformation w = ms [t may also be convenient to
seek a change of dependent variables w = : (Q) (and then write the
resulting equation in non-potential form if necessary) and then apply
the Painleve tests to the semilinear equation to determine if it

is possibly linearizable. (For fourth and higher order semilinear

partial differential equations, there is, at present, no equivalent

theorem to the one given by Svinolupov, Sokolov and Yamilov [14]
for third order equations.)
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Example 3.1 "
o
In this example we consider the equation o
o
.:-
_.5/2
up =T U (3.14)
which was shown by Konopelchenko and Dubrovsky [26] to be the
compatibility condition of the linear operators
W
LY, :
X v
. '
N
M= ogu/ 250w 35312, 58 g 3/2, 534 ) -
X 2 XX XX X t .
o
£
where 3 T 3/3x, 3 % 3/3t (i.e., LM - ML = 0 if and only if u satisfies N
(3.13)). o
We first put (3.14) into canonical form by making the trans- :f:'.
i
formation v = u-]/z, hence we obtain f';.
gy
.,,’\-
L
_ -5 -6 2 -7 2 -8 4 ‘
Ve T Ve Vex T 10v, (V2xv4x ¥ V3x) YO0V o v, AV Y ."
Applying a pure hodograph transformation to the above equation we cbtain %
-z -5 r"-]+5'2” . (3.19)
t 5¢ 25477 VAN EE Lo
which has the nonpotential form
o0 o
W’ = ws - 5w (w.—wa._ + WZ.’ w3) + 1OW “(w‘fw3, + oW WE \/ :
N
33 ! 4
- 10w W W (3.16) o
A A A e S A A A A A A A A et s -
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We now let Q@ = In w, hence
Q.= Qs + 50,04 - 50.05 - 50%Q,, +Q
r 5¢. x V3 22 £73 2t
which has the nonpotential form
_ 2 3 2 4
Qp % 9g5p * 5Q:Q3 * 54y - 59 - 2094 @y - 597a3 * 5q7q..  (3.17)
Equation (3.17) can be transformed into two linearizable fifth order

equations. Fordy and Gibbons [27] show that if g satisfies (3.17)

and u and v are defined by the Miura transformations

1
U:-qF—QZa v :q_:-?qza (3.]8)

then u and v respectively satisfy the Sawada-Kotera equation [28]

(sometimes referred to as the Caudrey-Dodd-Gibbon equation [29])

' 2
; UT = USE: + 5UU3E, + SuguzE + 5Su uf;’ (3.]9)

. -
: N
. 2
. and the Kaup equation [30] (sometimes referred to as the Kuperschmidt i
r. __:
; equation, cf. [27]) 5
F. :.'1
?‘ o
r -

- = + 10 + 25 + 20 2v (3.20) N
:’ VT = ng VV3: V VZ, " }:. RN :

¢

N

Both equations {3.19) and (3.20) are known to be linearizable, see [31]

and [30] respectively. This shows that equation {3.14) is the quasi-

*x J'.n" { -‘J“-ﬁ.‘ NN A AT «"; -";- ) \".-v'.-- ta ;-- ---- -".-(' f " N
v 0%, 2% "\"‘ - """""MM..AA&A.LL




-
vt

-

P
-

=

- ,--,
»

- .
-

oy

_.\ 'l-\'.

linear analogue of equation (3.17), which is linearizable and so (3.14)

should not be regarded as a "new" linearizable fifth order equation.

Example 3.2

The second equation in the Harry-Dym hierarchy is given by

_ 3 12
u, = u [u(uuxx - §ux)]

5 4 , 5372
u Ugy + Su (uxu4x * uxxu3x) * 2y Uy

(see [2b] or [32]). We first put (3.21) into canonical form by making

the transformation v, S U, hence we obtain

_ -5 5 -6 2
Ve T Ve Vex T 2V (4V2xv4x B 3V3x)
105 -7 2 315 -8 4
V% VaxYax T T8 Yk Vxxe (3.22)

Applying a pure hodograph transformation to (3.22) gives

r = n - 5n r r*_l - é.n 2n-l
TR HU A S I FA
. 25,2 -2 _ 454 -3
2 "2c73c" s g 't (3

R R A L R R A I I N
e R AN e Y N A A N e N N YA e T T

Cal
A NN

u
3x (3.21)

o
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which has the nonpotential form
N
b
35 22 >
L P A A A
-
Iy
NECRVN SN CERE RN E - S (3.24) 5
2 "cer 2 22 g " IR N
As in Example 3.1 above, we now let Q = In w, hence 3
y
‘H‘I
_ 5 2 2 345 ~

LA

RN

which has the nonpotential form

~S

wun

~—
"

3 15 4
q: ) ]qufqzt-— b %QZQ3: * g-—q q.’. (‘3. :

~ol L

q :q5-:-

ra~

Equation (3.25) is the second equation in the MKdV hierarchy (see[25]).

b I S J

This provides further evidence of the close relationship between -
the Harry-Dym equation and the MKdV equation. It is well known that %
the inverse scattering schemes for the MKdV equation and the Harry-Dym o

equation are related through a sequence of gauge transformations which

also involve an interchange of independent and dependent variables

xJ

[34] (see also [35]). Since the recursion operator for the Harry-Dym

PRALAL A SN

equation is well known (cf. [2b], [32], then it can be shown (Fokas
and Fuchssteiner [36]) that these recursion operators (or hereditary

cymmetries in the terminology of [36]) are related by a Backlund

transformation.
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K. Iv. DISCUSSION
”,
v In this paper we have discussed the relationship between quasi-
:F‘
s linear and semilinear partial differential equations. In particular,
an algorithmic procedure was developed for finding the guasilinear
(semilinear) analogue of a given semilinear (quasilinear) equation
- (if it exists). Furthermore, the associated quasilinear (semilinear)
N equation is unique up to equivalence. This procedure provides a simple
N
N algorithmic method for determining whether a given quasilinear partial
Py
~ differential equation might be linearizable. Consequently, several
N quasilinear partial differential equations which might appear initially
- to be “new" linearizable equations are actually equivalent to the
Q quasilinear analogue of a semilinear equation which is known to be

B integrable.

For example, Abellanas and Galindo [37] showed that the quasi-

v Linear equation

2 . .

> u, = (su" + Z2u + 4)3/2u , (4.1)

XXX

D)
-t
R R Y s

- where ., = , 7 are constants, possesses a bihamiltonian structure and
hence an infinite number of nontrivial conservation laws. Note that

equation (4.1) contains as special cases both the Harry-Dym equation

.
Pt lalalalod
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»
Tals rl

&
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b~ and 4n egzuation considered by Bruschi and Raanmisce [ 3]
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3/2
t u uxxx

Applying the method developed in the present paper shows that (4.1)
is transformed into either the MKdV equation (if 2 # 0) or the
linear equation Ny = e (if «=0and = # 0). (Bruschi :~d Ragnisco
[38] showed that (4.3) can be transformed via an extendec¢ hodograph
transformation to the linear equation.)

In two recent papers, Mikhailev and Shabat [39] have determined

necessary conditions for the existence of nontrivial conservation

laws for systems of equations of the form

u, = Alu)u_ + flu,u ), (4.4)

where

(This is analogous to the work of Svinolupov, Sokolov and Yamilov [14]
who also used the existence of nontrivial conservation laws as the
criterion in their determination of which third order semilinear
equations are linearizable.) In order to determine their necessary
conditions, Mikhailov and Shabat {33] first transformed the quasilinear

equation (4.4) into the semilinear canonical form
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(so equations (4.4) and (4.7) are equivalent), and then applying an

-

extended hodograph transformation tc (4.7).

2SS

’

We note that it would be useful to extend the method outlined in
earlier sections to quasilinear nonlinear evolution equations in two

spatial and one temporal dimensions. Due to the prasence of more inde-

pendent variables, there is more flexibility in the hodograph trans-

..:!—.’.,-‘,-(-{‘-{‘,ﬂ-

formation.
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Finally, we make a remark regarding the application of the Painleve BN

)

oS

tests. These tests have proved to be a useful criterion for the 'ndentitication gs'
o

"y
of linearizable (semilinear) partial differential eguations; however, there b
is one major restriction in their application. Since the Painleve tests .

require that a linearizable partial differential equation possesses the “i

Painlevé property possibly after a change of variables, then one may first Qf
have to make a change of variables before applying the tests. An open o
™

l-'

question is: Which transformations are allowable in the application of \:-
‘e

Cd

the Painleve tests? (i.e., which transformations does one have to check?). N
»

We believe that pure hodograph transformations and the notion of o
K

. )

equivalence are useful tools in this direction. ':}
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APPENDIX A
[n this appendix we show that the partial differential equation
|
&
PRI
up Ut h(u)ux. (A1) d
. . . _ . , Li
where h(u) is a rational function of u can pass the Painleve tests if b
and only if h{u) is a linear function of u. In (A.1) consider the P
»
traveling wave solution u(x,t) = u(z), z = x-ct, where ¢ is a constant. A
Then u(z) satisfies
u'' + n{ulu +cut =0 (A.2) R
Integrating yields
u' + H(u) + cu = A, A3
where %g = h{u) and A is a constant. [t is known that *he only equation
of the form ’
u' = R(u),
where R(u) is a rational function of u, which 145 ot “ainieve tyge
is the Riccati equation
: 2 -
u = 12U + L]U + xO. -

LV O A U I T
J"\l ’.-F\J'*I"u" ‘.-f _-J‘ ,\‘f \f
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where 1,, «; and x, are constants (see Hille B0 ] or Ince [41] for a y
o,
proof). Therefore (A.3) is of Painlevée type if and only if H(u) is a ;_
Pd.
>
quadratic function of u, so necessarily y
-
:'\
’
h(u) = w + =, (A.4) "
/
¢
4
where x and 8 are constants. If h{u) has the special form (A.4), then :t
~ 4
-
equation (A.1) is either (i) equivalent to Burgers' equation if a# 0, or (i1) 1
L
a linear equation if x = 0. Hence (A.1) can pass the Painleve tests ﬁ
&
if and only if h{u) is a linear function of u, as required. E
1)
L
APPENDIX B N,
fad
In this appendix we show that the partial differential equation g
RS
] 2, 3, .2 -
G, = Q. *(aa, *aq) 5 (- T)a%a, (8.1) 4
o
3
where = is a constant, can pass the Painleve tests if and only if x takes .
i
one of the three values 0, 3/2, 3. We first note that if x = 0 then “
(B.1) is the MKdV equation, which 1s known to be linearizable {15] and f
pass the Painleve PDE test [22]. Now we shall assume that * # 0 and N
)
we consider the time-independent solution q(x,t) = y(x) of (B.1), then ::
y{x) satisfies 5:
-:\

W o e e Tl T T e T T .
PRI . - ., e -
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which can be integrated once, yielding N

y'rayyt s S -)y? s A, (8.3 -

where A is an arbitrary constant. Now make the transformation y = 3w/x,

giving

W'+ Sww' o+ g(u -])a_2w3 = B, (B.4)

1]

where B : = xA/3. Ince [43, p332] shows that the equation

w' ' 3ww! +’,w3 = B, (B.%)

where + and B(# 0) are constants, is of Painleve type if and only if
v =1 (the case B = 0 is discussed below). Hence (B.4) (and hence also

(B.3)) is of Painlevé type if and only if

9 o2
2( L= ]) Tl
i.e.,
(- 3)(-3) =0 (5.6) %
.xi
If «=3/2 or « = 3 (after rescaling q by a factor of 2) then (B.1) ;i
is the second equation in the Burger's hierarchy N
-
b9
¥
= =3 2 3 2
9 7 9xx ~ 3(aq,, +ay) 7979, (8.7)
T B N N T A A A S IS NIRRT NN NOIIN
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a
»

(Olver [25]), which is reduced by the Cole-Hopf transformation

LAY

AN,

1
»

q = 2(Inu) = 2u /u,

to the linear partial differential equation

<

"

c

S
X ARRRE

LAY

[f B=01in (B.5), then there exist two choices of vy such that

the equation is of Painleve type, v =1 or+y = -9. If v = -9, then

)
9 = (‘2 -
?(1-])--91, ::
s
i.e., -
o
. - i N
(v (- é) = 0. (8.8) v
S
[f «=-1or «=1/2 (after rescaling q by a factor of 1/2), then (B.1) Rt
is ~
L
q, = a,__ - {aq,_ +q°) - 39% (8.9) :
t XXX Y 8%x X %" i s

e S EVER YL NN
o

I[f we seek a solution of (B.9) in the form S
N

. 23

: .

alx,t) = =P g )G, (8.10) ‘~

j=0 J °

o'y r{ “ ./' . .

with ¢ = x + f{t), in the neighborhood of the nonchardcteristic singularity

manifold defined by : = 0, then leading order analysis shows that

. .
LI I Y

1/)‘1. -
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3
p = -1 and there are two choices for dg» 99 ° -1 and qg * 2. Equating "
] coefficients of powers of : determines the recursion relations defining f
qj(t), for j 2 1. For to the choice q; = -1, the resonances are -1, .
3, 3 (the resonances are the values of j at which arbitrary functions ,}
-
b “.
' arise in the expansion (B.10) and for each positive resonance there is 3
4
a compatibility condition which must be identically satisfied). A
]
double resonance indicates that the expansion (B.10) does not represent f‘
~
; the general solution {logarithmic terms must be introduced into the o
expansion (B.10) so that it represents the general solution). For the R
’
choice qO = 2, the resonances are -1, 3, 6; the compatibility condition
p . . . .
) corresponding to the resonance j = 6 is not identically satisfied which
indicates that logarithmic terms again must be introduced into the .
) )
expansion (B.10). Therefore (B.9) does not pass the Painlevé PDE test. o
-
We therefore conclude that equation (B.1) can pass the Painlevé N
tests if and only if « takes one of the three values 0, 3/2, 3, as ;
]
b required. .
;
-
APPENDIX C -
)
In this appendix we show that tne partial differential equation e
&
\::
] _ 3, 2 _
i We = W 00" ?(wx/w)x + g(w)wx, (C.1) .
?
] e
Y NER
{ ) 3
; where g(w) is a rational function, can pass the Painlevé tests if and o
1 -
[
| only if .
| y j
| =~
| Y
] “
- RS
| glw) = WS+ w e W (C.2) ¢
l ‘
; 5
> L3
"
| ™
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vy W
2 e s/
LA A ]

»

L

where v, 2 and vy are constants. First, consider the time-independent

SR

MRS

LA AT

solution w(x,t) = y(x), then y satisfies

o L

LY

v = 30y )%yl - i)yt (.3

[ASTEON)

-~
Id

“w ’W,Y
]

*r
("!’
v

£ 5,

' : = d/dx. Integrating (C.3) gives

b3

o

®

3

D

1

<, M 2
50

o

2

P

/y - G(y) + A, (C.4)

~oj o

y'o=5y")

S

A/

where %% = g{y) and A is a constant. Multiplying y’3y' and integrating

again yields

T e T » 8 P
FRRR LATYART
PN A P

R

LR
ahad 24

where B is another constant. It is well known that the equation

PN I" ","n"

]
'.f’l

-
I &
e

(y')" = R{y), (C.6)

Lhl N

‘f PR 4
P A

s

.
Py

AN

-,

where R(y) is a rational function, is of Painleve type if and only if

P(y) is a polynomial of degree not exceeding 4 (see Hille [40 1 or Ince [41]

»
e
)

L'AA

for a proof). Hence equation (C.5) is of Painleve type if and only if

R
.'.""'
o e .
P

PPN e
AN

Y 3 A -2 -3 3
- fv G(v)dv-éy +B =y (xay Tyt oy
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Where 1., 134 15y and .y are constants. Solvirg (C.7) for g,y

yields

QOO Y

2

P

Lo

AN AT
12-f?z

-2
g(Y) = '3‘14)/ + 12 - 3JO_Y -, (R0

LR

If g(y) has the special form (C.8), then equation (C.1) is equation

k)

(1.18) which is equivalent to the CDF equation and which is known to pass

[
LY '

PRy

the Painleve PDE test [42]. Hence we have the required result.

LIPS
e T T ¥

ACKNOWLEDGMENT

P.A. Clarkson would like to thank the U.K. Science and Engineering
Research Counci} for the support of a Postdoctoral Research Fellowship.
We thank Y. Yortsos for many interesting discussions. This werk was
supported in part by the National Science Foundation under grant number E:
OMS-8202117, the Office of Naval Research under grant number NOOC14-76-C-0867, ‘-

and the Air Force Office of Scientific Research under grant number AFQSR-B84-0CCS.

PP
[AER AL s N

1.4

-(v
.y

Y ':". N

. s .

LA

. »

2

~a

-'f

T T O N o TR U P YU ‘__-v
O A R S R O N N I e N T N



REFERENCES.

X T N W,V W,

TL.TL.T e Ty oo ¥ VOV ENE OO -

ok}

Wi V.T. T e ¥ oy @ v /v T

C.S. Gardner, J.M. Greene, M.D. Krusgal ang RB.M. Miura, Metncd
for solving the Kcrteweg-de Vries equaticn, Phvs. Rev. Lett.,
19, (1967), pp. 1095-10G67.

M.J. Ablowitz and H. Segur, Sclitcns and tne Inverse Scattering
Transform, SIAM, Philadelphia, 1931,

F. Calogero and A. Degasperis,
Spectral Trarsform and Sclitcens I, North-Hcllarnd, Amsterdam,

1982.

E. Hopf, The partial differential equaticn Uy + du = “UL

Comm. Pure Appl. Math., 3, (1950), pp. 201-250.

J.D. Cole, On a quasilinear parabolic equation cccuring in
aerodvnamics, Quart. Appl. Math., 9, (1951), pp. 225-236.

A.S. Fokas arnd Y.C. Yortsos, On the exactlv solvable equation

- )
Sy = [(BS+Y) 2SX]X + a(BS+y) °S, cccuring in two-phase flow 1n
porcus media, SIAM J. Appl. Math., 42, (1982), pp. 318-332.

M.D. Kruskal, Nonlinear wave equations, in Dvrnamical Svstems,
Theory and Applications, ed. J. Moc=er, Lect. Notes Phvs.
38, (1975), pp. 310-354, Springer-Verlag, New York.

!

M. Wadati, K. Konnc and Y.H. Ichikawa, New integrable nonlinear
evcluticon equaticns, J. Phvs. Scc. Japan, 47, (1979), pp.
1698-1700.

T. Shimuzu and M. Wadati, A new integrable nonlinear evcoluticn
equatior, Prog. Thecr. Phvs., 63, (1930), pp. 808-320.

A.S5. Fokas, A svmmetry apprcach to exactlv sclvable evolution
equaticns, J. Math. Phvs., 21, (1980), pp. 1318-1325.

O. Levi, O. Ragnisco and A. Svm, The Backlund transformation
for nonlinear evolution equaticons which exhibit exctic
sciitorns, Phvs., Lett., 1004, (1984), pp. 7-10.

5. Kawamcto, An exact transformation from the Harryv Dvm
equation to the Mcdified KdV equation, J. Phvs., 3cc. Japan, 54,
(1335}, pp. 2055-2056.

A. Ramani, B. Dcrizzi and B. Grammaticcs, Painleve caonjecture
revisited, Phvs. Rev. Lett., 49, (1932), pp. 1535-1541.

A.F. Ranada, A. Ramani, B. Dorizzi and B. Grammati:~s, The
weak-Palnleve propertv as 5 critericn for the 1 tegrability of
¢vnamical svstems, J. Matn. Phvs,, 26. C1585), pp. Toc-T10

R.M. Miura, The Korteweyg-Je Vries equaticn: a survev of
results, SIAM Rev., 18, (197%), pp. 412-u453.

AN A A SR A ” T T A

A

-

L4 A

5% e s




PLESr Ty Wl M WS 4

« ¥ o2 & AL

PRl M AW

R R R R ) el Y F 2D

PEL A el

(13]

(14a]

[14b]

(15a]

[15b]

[16]

(17a]

(17b]

o

e a N T a VN NN T A RN M R W W T J

J. Weiss, Backlund transformaticns and the Painlevé prcpert
J. Math. Phys., (1986), pp. 1293-1305.

S.I1. Svinclupov and V.V. Sokclov, Evolution equaticns ~itin
nontrivial conservaticn laws, Func. Anal. Appl., 16, (13:2),
pp. 317-319.

S.I. Svinolupcv, V.V. Sckolev and R.I. Yamilov, On Backlunc
transformations for integrable eguaticns, Sov. Math. Dckl., 25
(1983), pp. 165-168.

y

M. Wadati, The modified Korteweg-de Vries equation, J. Phvs,
Soc. Japan, 32, (1972), pp. 1631.

M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, The inverse
scattering transform - Fourier analvsis for nonlinear problems
Stud. Appl. Math., 53, (1974), pp. 249-315.

F. Calogerc and A. Degasperis, Reducticn technique for matrix
nonlinear eveocluticon equations sclvable bv the spectral
transform, J. Math. Phvs., 22, (1981), pp. 23-31.

B.A. Kuperschmidt, Cn the nature c¢f the Gardrer transformatiocr,
J. Math. Phvs., 22, (1981), pp. U4ug-u451.

R. Dodd and A. Fordv, The prclicngaticn structure of
quasi-polyvnomial flcw=, Prce. R. Scc. Lond. A, 385, (1983),
pp. 389-u429.

F. Calogerc and A. Degasperis, A mcdifieac modified Korteweg-de
Vries equaticrn, Irverse Prcolems, 1, (7§%85), pp. S7-£6.

M.J. Ablowitz, A. Ramani and H. Segur, Nonllnear eVﬂxutlf"
equaticons and crdinaryv differential ejusticns of Painleve tvpe
Lett. Nucve Cim., 22, (1973), pp. 233-233%3

M.J. Ableowitz, A. Ramani and H. Segur, A connecticon between
norlinear evclution equatlcons and orcinarv differential
equations of P-tvpe. I, J. Math. Phvs., 21, (1980), pp.
715-721.

S.P. Hastings and J.B. McLen:r, A toundarv vaiue problem
gsscclated witn the sectrnd Falnleve transcendent and th
Korteweg-de Vrise egquaticn, Arch. Rat. Mech. Aral., 73, (1930),
cp. -21=51

J.B. Mclecg anz °..J
differenrtial ejuat:

The ccrnnecticn Letween partial
scluble by inverse scattering and

o

no
Pt
<
4]
-1

).
3

crdinarv Jdifferential equaticons of Painleve tvpe, SIAM J. Math.
Aral., 14, (1353}, fp. 433=67¢

J. weiss, M, Taraor ara sTrevaLle, The Fairlevé propertv o
cartial differentis) o juations, Mat Fhive,, 24, (19RE i, PF
Sl22-52%

-

AT R AT

VXA

AR AR

P

Yy

l'-'-'-"
PO -

-




AL APARAE A ARAL AL A S AACAALAUA A AU NE LA L EE EL S R S CACA AL AR A S R S S AR D g 4

N

Ll
i

o A
(
5

(23] M.D. Kruskal, private communicaticn,.

[24] J. Weiss, The Painlevé prcpertv for partial differential
equations. II: Bdcklund transformaticns, Lax pairs, and the
Schwarzian derivative, J. Math. Phvs., 24, (1983), pp.
1405-14123,

[(25] P.J. Olver, Evoluticn equations posessing infinitelv many
svmmetries, J. Math. Phys., 18, (1977), pp. 1212-1215.

[26] B.G. Konopelchenko and V.G. Dubrcvskv, Scme new integrabile
evolution equations in 2+1 dimensions, Phvs. Lett., 1024,

(1984), pp. 15-17.

[27] A.P. Fordv and J.D. Gibbons, Some remarkable ncnlinear
transformations, Phys. Lett., 754, (1980), p. 325.

(28] K. Sawada and T. Kotera, A method for finding N-soliton
solutions of the KdV and KdV-like equation, Prog. Theco. Phvs.,
51, (1974), pp. 1355-1367.

[29] P.J. Caudrev , R.K. Dodd and J.D. Gibbon, A new hierarchv cf
Korteweg-de Vries equaticns, Proc. Rov. Soc. Londor A, 351,
(1976), pp. 407-422.

[30] D.J. Kaup, On the inverse scattering problem cof the class
Yexx t 6Q wx + HBR v = Ay, Stud. Appl. Math., 62, (1980), pp.
N 189-216.

tal R.K. Dodd and J.D. Gibbon, The prclcongaticrn structure of a
higher order Kcrteweg-de Vries equation, Prcc. Rcov. Scec. London
A, 355, (1977), pp. 287-296.

{310] Satsuma J. and Kaup D.J., A Backlund transformaticn for a

higher order Korteweg-de Vries equaticn, J. Phvs. Scc. Jagan, A

43, (1978), pp. 692-697. 2

-

[32] C. Rogers and M.C. Nucci, On reciprocal Backlund )

8 transformations and the Korteweg-de Vries hierarchv, Phvsica -ﬂ
; Serip., 33, (1986), pp. 289-292. N
-

" )
2331 M. Wadati, K. Kcnne and Y.H. Ichixkawa, A genreralizaticn ¢f tne E:

inverse scattering method, J. Phvs., Scc. Japan, 46, (1979), pp. .

1965-1966. .

o

Y

- C34a] Y. Ishimori, A relationship between the )
8 Ablowitz-Kaup-Newell-Segur and wadati-Kcnno-Ichikawi schemes of ﬂ
- the inverse scattering methed, J. Phvs. Scc. Japan, 50, A
. (i1981), pp. 3036-3041. N

{24b] M., Wadati and €. Scgo, Gauge transformaticns in soliten theorw,
J. Phyvs. 5Soc. Japan, 52, (1983), pp. 364-333.

{35] C. Rcgers and P. wcng, On reciprccal Backlund transformatizns
of 1nverse scattering schemes, Phvsica Scrip., 30, (1934), pp.

Ll

f{um

L I L .-\-.'-__-‘_-_~_._.- .._. .,._._._._ .
%I'J‘J'J'J‘ * A ot

AR s - |
MMJAMMAALJ.A“M‘A Y .nh _‘A ».h...a...‘ e s I Al



(36]

(43]

(B3
~o

10-14.

S. Fokas and B. Fuchsstelner, Backlund transformaticn for
reditarv svmmetries, Nonlinear thecrv, Meth. Appl., 5,
980), pp. H423-u432.

AL
h2
(1
L. Abellanas ard A. Galinde, A Harrv dvm class of bihamiltcnrnian
evolution equatiors, Phvs. Lett., 1074, (1985), pp. 159-160.

M. Bruschi and 0. Ragnisco, On the solutions of a new class of
ncnlinear evcluticn equaticns, Phvs. Lett., 102A, (1984)
327-328.

A.V. Mikhailov arnd A.B. Shabat, Integrabilitv conditions for

systems of two equations of the form EPRE A(E)EXX + E(E’Ex)' I

& II, Thec. Math. Phvs., 62, (1985), 107-122; 66, (1986),
31=U3.,

E. Hille, Ordinarv Differential Equations in the Complex

Dcmain, Wiley, New York, 1976.

E.L. Ince, Ordiraryv Differential Equations, Dover, New York,
1956.

L. Hlavatyv, Painlevé analvsis ¢f the Calcgerc-Degasperis~Fokas
equation, Phvs., Lett., 1134, (168%), pp. 177-178.

V.V. Sokolov, private communication.

Tt e AT A A T P A L AN LI

Y P )

R A s S S A

) W N ST TN NN P S R R N . BRCN
I:LJ:A::_ fh{\{mi&MA.IA_(A\.(L{A_{A_LLi AR T 2 oA A A A AP JRrCr I R N J‘}f}i‘:‘

¥
.
[}
d

[y

b Yo et/

SNy

vy

v 1™
LA

o

.
fadl A

LTSN

s

‘_.“.-....
AR ALY

« oo

,
Py

At

|-

a



- ) ARNNS oo f ) 0 St A R Gl LA s TAESSESS
s PaNly als v & s ] AT AR . o Y PN A AR A

[ y )
.-.- | A ! » , . g CCA Y
NEIST (S PUNYY Ta \-NP\(-.PN’.N’M\».....\ S0 -\runt\.a\f\?\-(\. [ T ..-...\. LA ALo -.L.F--.,. YWkt P

7
»




